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A scaling hypothesis on finite-size scaling in the presence of a dangerous 
irrelevant variable is formulated for systems with long-range interaction and 
general geometry L a d' x oe d'. A characteristic length which obeys a universal 
finite-size scaling relation is defined. The general conjectures are based on exact 
results for the mean spherical model with inverse power law interaction. 
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1. I N T R O D U C T I O N  

According to the finite-size scaling hypothesis due to Fisher, ~1'2) in the 
neighborhood of the critical temperature T =  Tc of a second-order phase 
transition in a system of size L, finite-size effects are controlled by the ratio 
L / ~ ,  where ~ is the bulk correlation length, diverging as Itl v when t-- 
( T -  T~)/Tc---,O. It has been found, however, that the above hypothesis 
fails at space dimensionalities d above the upper critical dimensionality 
d,.(3 6) Renormalization group analysis reveals that the violation of finite- 
size scaling, as well as the breakdown of hyperscaling, is a consequence of 
the appearance in the theory of a "dangerous irrelevant variable" at d >  du. 
In the derivation of scaling laws for the thermodynamic functions one 
essentially relies upon the assumption of analytical dependence of these 
functions on the irrelevant variables, which is not the case at d >  d , .  (7'8) It 
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has been suggested that if hyperscaling is not valid, finite-size effects are 
controlled by a different ratio, namely L/loo, where loo' 'is the so-called 
thermodynamic length. (9'1~ For systems of fully finite block geometry this 
length diverges as 

l~ ~ ]tl-(2~+,~)/d (t) 

when t --* 0. It is evident from (1) that when the hyperscaling relation dv = 
2fi + 7 holds, then the thermodynamic length coincides with the correlation 
length. 

The investigation of finite-size scaling in the mean-field regime is of 
special interest for systems with long-range interactions decaying at large 
distances r as r -d-~, with 0 < a < 2 ,  since then d u = 2 a  may become less 
than the physically attainable dimensionalities d =  1, 2, 3, provided a is 
small enough. 

The aim of the present work is the formulation of a general hypothesis 
of modified finite-size scaling for systems with long-range interactions of 
dimensionalities above the upper critical one, The ideas suggested in ref. 9 
for systems with short-range interactions (a = 2) and fully finite geometry 
( d ' = 0 )  will be extended to the case of arbitrary a s  (0, 2) and general 
geometry of the form L a a'x oed'. Periodic boundary conditions will be 
assumed in the d - d '  directions along which the system is finite. 

From a methodological point of view it is convenient to use the 
exactly solvable mean spherical model as a basis for further generalizations. 

2. F IN ITE-S IZE  S C A L I N G  FOR T H E  S P H E R I C A L  M O D E L  W I T H  
L O N G - R A N G E  I N T E R A C T I O N S  

A new analytical technique for the evaluation of the free energy 
density of the mean spherical model with inverse power law interaction was 
suggested in ref. 11. A pair interaction potential J(r), decaying at large 
distances r as r - d - ~  with a > 0  a parameter, has been considered in the 
case of a finite lattice A = | ~= 1 { 1,..., L k } with periodic boundary condi- 
tions. The Fourier transform 

J(q) = ~ JA(I) exp(--il" q) (2) 
l e A  

of the effective potential JA(I) which takes into account interactions with 
repeated images of the system, (12) 
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has the long-wavelength asymptotic form (0 < a < 2, p .  > 0) 

J(q) _~ J(0)(1 - p .  [ql"), Iql--}0 (3) 

The free energy density fLU, h), depending on a magnetic field H e  ~1, 
h = H/k8 T, has been evaluated in the case of a system of hypercubic shape, 
Lk = L, k = 1 ..... d. Extending the method suggested in ref. 11 to the case of 
an L d- d, x oc d, geometry, for the singular part of the free energy density in 
the neighborhood of the critical point we obtain, at d >  2a, 

(kBT) l f~')(t, h) 

1 1 
~- ~ p~(K~ - K ) ~ - - ~  p2 ] W),o(0)[ ~ 2  

h 2 1 F( (d+ 1) /2)L_  d ~ ,  
2p .K~  2 a ~(d+ 1)/2 I(d-- d') ill-d Ud,.(L [/[ ~1/o) (4) 

Here K =  J(0)/k B T, K~ = 1, the symbol l ( d - d ' )  means that the summation 
is over l~ ~d d' and the primed summation sign that the term with ]!1 = 0 
is omitted; the function Ud,~(Z) is defined as 

/, ",o 2 (d + 1 )/2 
u a ' ~  d x ( l + x  ) E . , , ( - x " z  ~ (5) 

where 
ov Z k 

= v( U+ 
c~>0 (6) 

is the Mittag-Leffler function (for more details see ref. 11 ). The parameter 
= ~/p. ,  and ~b = 2 s / K -  1 is a linear function of the spherical field s and 

obeys the mean spherical constraint. When d > 2 a ,  d ' < a ,  the mean 
spherical constraint in the neighborhood of the critical point takes the 
form (~3) 

(s) . _ p~lhZLa .~-2  + 2Y.~.d,,~(~L ) - potL d-~  + (7) 

This equation is valid for all dimensionalities d such that a I<  d< a ( I+  1) 
with some integer I~>2; Wj,.(0) is the derivative at ~ = 0  of the Watson- 
type integral 

Wd,~(~) = (2u) df  daq (~+ iql~) 1 
[ - ~,rr]  a 

(8) 
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Y(d~,,~(') is the spin-wave scaling function introduced at d ' =  1 by Fisher 
and Privman(12); the constant D (I) is given by the explicit expression d, o- 

The study (14) of the pair spin-spin correlation function GL(R; t, h) in 
a system with geometry L d d' X ood' has shown that its leading asymptotic 
form as ~ 0  and IRI >> 1 is 

GL(R; t, h) ~- D ( T )  IRI-d+ ~X(~I/~ ~l/aL) (10) 

where ~ obeys Eq. (7). The above result indicates that at any space dimen- 
sionality d the role of an effective correlation length is played by the 
quantity 

r h)= I-~(t, h)] -~/~ (11) 

When d>  2a and L -* ~ ,  the solution ~L of the spherical constraint (7) is 
such that ~LL ~ ~0 .  Then, by neglecting terms of (fi(~LL ~) in (7) and 
taking into account definition (11), we obtain the following equation 
for eL: 

IW),o(0)I (L/~L)~L a 2 " - D ( ~  CL/~ ) -~+a'  d ' ,~  / L 

= po 7L a ~ + po~h2L a+ ~ 2" (12) 

where the variable 

7= t - 2 Y(e~),,~( O ) /poL a ~ (13) 

allows for the finite-size shift in the critical temperatureJ 7' ~5) Obviously, the 
solution of Eq. (12) may be written in the form 

~L = L~( 7LvT, hLYn, LY") (14) 

where, at d > d, = 2a, 

y T = l / v = a ,  y ~ = A / v = 3 a / 2 ,  y . = 2 c r - d  (15) 

On the other hand, by introducing the new variables 

~ . = ~ r L  1-qlyu t,="{LYr+q2yu, h . = h L Y . + q 3 y .  (16) 

with 

ql = - (2~  - d')  -~, q2 = ql YT, q3 = ql YH (17) 
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we see that the solution of Eq. (12) may be written in the equivalent form 

~L = L1 +qlYu(( ~LyT +q2yu' hL-Vn+q~Y~) (18) 

Note that there ql Yu > 0, in apparent contradiction with the assump- 
tion of Binder et al. (9) The explanation of this fact is the following: the 
inequality ql Yu ~ 0 adopted in ref. 9 holds only in the case when the effec- 
tive correlation length may be defined in terms of the second moment of 
the pair correlation function. In the case of long-range interactions 
(0 < o < 2) or near the critical point, the role of an effective correlation 
length which scales long distances in the pair correlation function [see 
Eq. (10)] is played by the quantity ~--l/cr,(14) It is known that at the critical 
point the latter quantity increases faster than linearly in L when L ~ oo if 
d> du. (3'5'6'16) 

Consider now expression (4) for the singular part of the free energy 
density. Since, in view of (18), LO2 '~ ~ 0 when L ~ oo at fixed t*, h*, the 
sum on the right-hand side of Eq. (4) may be approximated at 0 < d' < o, 
d >  2a, as follows: 

~ '  Ill-~ud,,(L I11/~l/,) 
l(d-- d') 

-- u, ,a(0) E '  I tl - "  
/(d d ' )  

2~z(J- d')/2 f ;  
-- (L~176 F ( ( d -  d')/2) dr r - J ' -  l[ua,~(O ) -- ua, o(r ) ]  

7~(d+ 1 )/2 
=ud,~(0) ~ '  ill-d r)Io) (L~)a'/o 

t(d-a') d 'F((d+ 1)/2) ~a,~ 
(19) 

Now, by taking into account Eqs. (14) and (18), we can cast the free 
energy density (4) into two equivalent forms: 

(kB T)- l fL( t ,  h) ~- L-af(TL"7, hL -'H, L yo) (20) 

a n d  

(kBT) lfL(t, h) ~ L a*f(TL-~+q2-"", hLYZ+q3*Q (21) 

where the exponent d*, 

d* = d + d ' q l y u  

is related to Fisher's anomalous dimension. (17) 

(22) 
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3. THE G E N E R A L  H Y P O T H E S I S  

The exact results obtained in the preceding section for the mean 
spherical model admit a simple interpretation in terms of finite-size scaling 
functions depending on a dangerous irrelevant variable (~7) u with exponent 
y . = d . - d < O a t  d>d~: 

f c  = L - a f (  tLyr, hLYH, uLY") 
(23) 

~L = Lr tLyr, hLYU, uLY") 

where 

f ( x ,  y, z) = za'qlf(xz q2, yz q3) 

~(x, y, z) = z ql ~(xz q2, yz q3) 
(24) 

We may conjecture that the exponents ql, q2, and q3 for O(n) models 
at d >  du take the value (17) with y r =  1Iv = o., yH= A/v = 3o-/2. 

First, we should emphasize that the variable u is dangerous for the free 
energy density only when d ' >  0. In this case the normalization coefficient 
of the free energy density [see Eqs. (21), (22)-I has the meaning of a 
correlated volume: 

d - - d '  d '  Yu L r ~La+a'ql Ld* (25) 

In ref. 9 three arguments are given in favor of d*=d.  All of these 
arguments, however, are based on the assumption that the system is fully 
finite, i.e., that d ' =  0. 

Second, note that, as follows from (23) and (24), 

~c(t, h, u)= L 1 + ql y .  ~(tLY~, hLS~,) (26) 

where 

Y*=YT+qzY~ ,  Y*=YH+q3Yu  (27) 

The existence of the thermodynamic limit ~ of ~c implies that at fixed 
t > 0  and ht-4  

~( t ,  h, u ) -  t vx(ht 4) (28) 

where 

A = YH/Yr, 1 + ql Y, = vy* (29) 
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and X(.)  is a universal function. In view of (29), Eq. (26) may be rewritten 
in the form 

IL = L g ( t L  y~, hLY'*O, lL = ~'~Y~ (30) 

where a new characteristic length lL of the finite system has been intro- 
duced and g ( x , y ) =  [((x,  y)]l /vYL Next, from the existence of the ther- 
modynamic limit lo~ of 1L we obtain 

loo(t, h, u ) ~ t - 1 / Y T X ( h t  ~) (31) 

By differentiation of the finite-size scaling relationship for the free energy 
density with respect to the magnetic field, one may show that (9) 

y*  = d*/(7 + 2fi), y~  = d*(7 + fl)/(7 + 2fl) (32) 

Therefore, the characteristic length l~ introduced here [see Eq. (31)] coin- 
cides at d '  =0 ,  when d * =  d, with the thermodynamic length defined by 
Binder et a/. (9) [see Eq. (1)]. In the case of a general geometry L d a ' x  oo d', 

by Eqs. (17), (27), and (32), the dimensionality d* may be written as 

d* = d -  d ' (dv  - 7 - 2 f l ) / (d 'v  - ? - 2/3) (33) 

Obviously, d * =  d in the case when d ' =  0, d being arbitrary, as well as in 
the case when d < d ~ ,  and the hyperscaling relation dr=-7 +2/3 holds, 
d ' < d t = a  being arbitrary. However, only in the latter case does the 
characteristic length lL coincide with the correlation length ~L' In any case, 
either when d <  d~ or when d >  du, the length IL obeys the universal finite- 
size scaling relation (30). with exponents y* and y *  given by Eqs. (32) 
and (33). 
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